Modification Strategies of g-C3N4 for Potential Applications in Photocatalysis 307

Gu, Y., A. Bao, X. Zhang, J. Yan, Q. Du, M. Zhang and X. Qi. 2021. Facile fabrication of sulfur-doped Cu2O and

g-C3N4 with Z-Scheme structure for enhanced photocatalytic water splitting performance. Mater. Chem. Phys.

266: 124542.

Guo, H., S. Wan, Y. Wang, W. Ma, Q. Zhong and J. Ding. 2021. Enhanced photocatalytic CO2 reduction over direct

Z-Scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer. Chem. Eng. J.

412: 12864.

Guo, Q., Y. Xie, X. Wang, S. Lv, T. Hou and X. Liu. 2003. Characterization of well-crystallized graphitic carbon

nitride nanocrystallites via a benzene-thermal route at low temperatures. Chem. Phys. Lett. 380(1-2): 84–87.

Guo, Y., B. Chang, T. Wen, S. Zhang, M. Zeng, N. Hu, Y. Su, Z. Yang and B. Yang. 2020. A Z-scheme photocatalyst

for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3-x nanoplates onto

2D g-C3N4 nanosheets. J. Colloid Interface Sci. 567: 213–223.

Han, C., L. Ge, C. Chen, Y. Li, X. Xiao, Y. Zhang and L. Guo. 2014. Novel visible light induced Co3O4-g-C3N4

heterojunction photocatalysts for efficient degradation of methyl orange. Appl. Catal. B: Environ. 147:

546–553.

Hao, J., S. Zhang, F. Ren, Z. Wang, J. Lei, X. Wang, T. C. and L. Li. 2017. Synthesis of TiO2@g-C3N4 core-shell

nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light. J. Colloid Interface Sci.

508: 419–425.

Hao, Q., C. Xie, Y. Huang, D. Chen, Y. Liu, W. Wei and B.-J. Ni. 2020. Accelerated Separation of Photogenerated

Charge Carriers and Enhanced Photocatalytic Performance of g-C 3: 249–258.

Hasanvandian, F., M. Moradi, S. A. Samani, B. Kakavandi, S. R. Setayesh and M. Noorisepehr. 2022. Effective

promotion of g–C3N4 photocatalytic performance via surface oxygen vacancy and coupling with bismuth-

based semiconductors towards antibiotics degradation. Chemosphere. 287 (Pt 3).

Hieu, V. Q., T. C. Lam, A. Khan, T. T. T. Vo, T. Q. Nguyen, V. D. Doan, D. L. Tran, V. T. Le and V. A. Tran. 2021.

TiO2/Ti3C2/g-C3N4 ternary heterojunction for photocatalytic hydrogen evolution. Chemosphere. 285: 13142.

Hu, S., F. Li, Z. Fan, F. Wang, Y. Zhao and Z. Lv. 2014. Band gap-tunable potassium doped graphitic carbon nitride

with enhanced mineralization ability. Dalton Transact. 44(3): 1084–1092.

Hu, S., L. Ma, J. You, F. Li, Z. Fan, F. Wang, D. Liu and J. Gui. 2014. A simple and efficient method to prepare a

phosphorus modified G-C 3N4 visible light photocatalyst. RSC Adv. 4(41): 21657–21663.

Huan, Z., J. Chang and J. Zhou. 2010. Low-temperature fabrication of macroporous scaffolds through foaming and

hydration of tricalcium silicate paste and their bioactivity. J. Mater. Sci. 45(4): 961–968.

Ji, C., S. N. Yin, S. Sun and S. Yang. 2018. An in situ mediator-free route to fabricate Cu2O/g-C3N4 Type-II

heterojunctions for enhanced visible-light photocatalytic H2 generation. Appl. Surf. Sci. 434: 1224–1231.

Jiang, H., Y. Li, D. Wang, X. Hong and B. Liang. 2020. Recent advances in heteroatom doped graphitic carbon nitride

(g-C3N4) and g-C3N4/Metal oxide composite photocatalysts. Curr. Organ. Chem. 24(6): 673–693.

Jiang, L., X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu and H. Wang. 2017. Doping of graphitic carbon nitride for

photocatalysis: a reveiw. Appl. Catal. B: Environ. 217: 388–406.

Jiang, Y., Z. Sun, Q. Chen, C. Cao, Y. Zhao, W. Yang, L. Zeng and L. Huang. 2022. Fabrication of 0D/2D TiO2

Nanodots/g-C3N4 S-Scheme heterojunction photocatalyst for efficient photocatalytic overall water splitting.

Appl. Surf. Sci. 571: 15128.

Jin, C., M. Wang, Z. Li, J. Kang, Y. Zhao, J. Han and Z. Wu. 2020. Two dimensional Co3O4/g-C3N4 Z-scheme

heterojunction: mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic

performance. Chem. Eng. J. 398: 125569.

Jin, R., S. Hu, J. Gui and D. Liu. 2015. A convenient method to prepare novel rare earth metal ce-doped carbon nitride

with enhanced photocatalytic activity under visible light. Bull. Korean Chem. Soc. 36(1): 17–23.

Karimi, M. A., M. Atashkadi, M. Ranjbar and A. Habibi-Yangjeh. 2020. Novel visible-light-driven photocatalyst of

NiO/Cd/g-C3N4 for enhanced degradation of methylene blue. Arab. J. Chem. 13(6): 5810–5820.

Karpuraranjith, M., Y. Chen, S. Rajaboopathi, M. Ramadoss, K. Srinivas, D. Yang and B. Wang. 2022. Three-

dimensional porous MoS2 nanobox embedded g-C3N4@TiO2 architecture for highly efficient photocatalytic

degradation of organic pollutant. J. Colloid Interface Sci. 605: 613–623.

Kočí, K., M. Reli, I. Troppová, M. Šihor, J. Kupková, P. Kustrowski and P. Praus. 2017. Photocatalytic decomposition

of N2O over TiO2/g-C3N4 Photocatalysts Heterojunction. Appl. Surf. Sci. 396: 1685–1695.

Kong, Y., C. Lv, C. Zhang and G. Chen. 2020. Cyano group modified G-C3N4: molten salt method achievement and

promoted photocatalytic nitrogen fixation activity. Appl. Surf. Sci. 515: 14600.

Kuriki, R., K. Sekizawa, O. Ishitani and K. Maeda. 2015. Visible-light-driven CO2 reduction with carbon nitride:

enhancing the activity of ruthenium catalysts. In Angewandte Chemie - Int. Ed. 54: 2406–2409. 1002/

anie.201411170: 54.

Lan, Z. A., G. Zhang and X. Wang. 2016. A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox

water splitting. Appl. Catal. B: Environ. 192: 116–125.